“ALFRED, it’s spinning.” Roy Kerr, a New Zealand-born physicist in his late 20s,had, for half an hour, been chain-smoking his way through some fiendish mathematics. Alfred Schild, his boss at the newly built Centre for Relativity at the University of Texas, had sat and watched. Now, having broken the silence, Kerr put down his pencil. He had been searching for a new solution to Albert Einstein’s equations of general relativity, and at last he could see in his numbers and symbols a precise description of how space-time—the four-dimensional universal fabric those equations describe—could be wrapped into a spinning ball. He had found what he was looking for.
When this happened, in 1962, the general theory of relativity had been around for almost half a century. It was customarily held up as one of the highest intellectual achievements of humanity. And it was also something of an intellectual backwater. It was mathematically taxing and mostly applied to simple models with little resemblance to the real world, and thus not widely worked on. Kerr’s spinning solution changed that. Given that pretty much everything in the universe is part of a...Continue reading
Source: Science and technology http://ift.tt/1MS56Eq
EmoticonEmoticon