THE idea came to Ralph Liedert while he was sweltering in the Californian sunshine, having been standing with his daughter for over an hour in a queue for a ride at Disneyland. What, he thought, if his T-shirt had a cooling system he could switch on, at the tap of a smartphone app, when he needed it. No doubt similar thoughts have crossed the minds of many a parent in such circumstances. They, though, did not have the means to make their dream reality. Mr Liedert does, for he works at the VTT Technical Research Centre of Finland, as one of a team there studying the burgeoning field of microfluidics.
Cooling vests already exist (they are sometimes used by racing drivers, motorcyclists and people such as furnace operators, who work in hot conditions). But the tubes through which the cooling water is being pumped, and the vests’ need to be connected to external units that chill this water, make them bulky and unwieldy. Mr Liedert thought VTT’s microfluidics department could do things better.
As its name suggests, microfluidics is the art of building devices that handle tiny amounts of liquid. Inkjet-printer cartridges are a familiar example. Less familiar, but also important, are “labs-on-a-chip”. These are tiny analytical devices that transport fluids such as blood through channels half a millimetre or less in diameter, in order to carry them into...Continue reading
Source: Science and technology http://ift.tt/1HaXIHi
EmoticonEmoticon